Einführung QS-System

Weiterbildung Geschäftsstelle QSEM

3. September 2020

Programm

Zeit	Inhalt	Referenten
9:45 - 10:15	Eintreffen und Empfang mit Kaffee und Gipfeli	
10:15 - 10:25	Begrüssung und Programm	Maria Sautter, Geschäftsstelle QSEM
10:25 -10:45	Definition und Nutzen eines QS- System Anforderungen für die Zulassung von Messstellen: Überblick	Maria Sautter, Geschäftsstelle QSEM
10:45 - 11:15	QS Handbuch einer behördlichen Messstelle	Christoph Baltzer, Amt für Umwelt und Energie Kt. Bern
11:15 - 11:45	QS Handbuch einer privaten Messstelle	Jürgen Beckbissinger, Acontec AG
11:45 – 13:15	MITTAGESSEN	

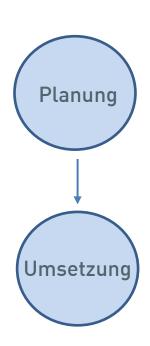
Programm

13:15 - 14:00	Anforderungen an Messgeräte, Kalibration und Prüfgase	Kurt Wälti, UCW Umwelt Controlling + Consulting
14:00 - 14:45	Anforderungen an Auswertungen und Berechnungen	Michael Andrée, Airmes AG
14:45 - 15:15	PAUSE	
15:15 - 15:45	Anforderungen an Messberichte	Kurt Wälti, UCW Umwelt Controlling + Consulting
15:45 – 16:30	Erste Audit-Erfahrungen	Jürgen Beckbissinger, Acontec AG Manuel Happe, Lonza AG Christian Sprecher, NoxaQuant GmbH
16:30 Uhr	ENDE	

Definition und Nutzen eines QS-Systems und Anforderungen für die Zulassung

Maria Sautter

Geschäftsstelle QSEM


Definitionen

Qualitätsmanagement

Das Qualitätsmanagement umfasst sämtliche Prozesse und organisatorische Massnahmen, die zum Ziel haben, die Qualität von Produkten und Dienstleistungen zu verbessern.

Qualitätssicherung

Massnahmen, die gewährleisten, dass die Vorgaben des Qualitätsmanagements eingehalten und korrekt umgesetzt werden.

-> Qualitätssicherung ist ein Teil von Qualitätsmanagement

Nutzen von Qualitätsmanagement

- Verbesserter Marktzugang
- Kontinuierliche Verbesserung der Leistungen

QUALITY
Our Passion

- Kundenzufriedenheit
- Effiziente Einarbeitung von Mitarbeitenden
- Kosteneinsparung

Nutzen von Qualitätsmanagement ... für eine Messstelle

- Kontinuierliche Verbesserung der Leistungen
 - z.B. Verbesserung der Qualität von Messberichten nach Rückmeldungen von Kunden und Behörden
- Kundenzufriedenheit
 - z.B. Dank einer effiziente Auftragsabwicklung
- Effiziente Einarbeitung von Mitarbeitenden
 - z.B. Dank klaren Arbeitsanleitungen
- Kosteneinsparung
 - z.B. Dank regelmässiger Prüfung/Wartung der Messgeräte: Risiko für eine Panne während der Messung senken, Langlebigkeit der Geräte erhöhen

QS von Emissionsmessungen - Grundlagen

LRV-Revision 2018

Art. 13a Nachweis der anerkannten Regeln der Messtechnik 1 Lässt eine Behörde Emissionsmessungen und Kontrollen nach Artikel 13 durch Dritte durchführen, so muss sie periodisch prüfen, ob diese die anerkannten Regeln der Messtechnik ausreichend kennen.

Beschluss KVU

Auf Basis der untersuchten Varianten entschied die KVU, ein an die Schweizer Verhältnisse angepasste Zulassungssystem zu entwickeln und eine zentrale Geschäftsstelle für die Qualitätssicherung einzurichten.

Zentrale Anforderungen

Anforderungen für die Zulassung von Emissionsmessstellen unter Art. 13a LRV zum Nachweis anerkannter Regeln der Messtechnik

Anforderung für die Zulassung: Überblick

 Technische Anforderungen vor Ort bei einer Messung

Audit während der Messung

- Technische Anforderungen am Firmensitz
- Technische Anforderungen an Messberichte
- Administrative Anforderungen

Audit am Firmensitz der Messstelle

Technische Anforderungen vor Ort bei einer Messung

- Messvorbereitung
- Kalibration
- Messausrüstung
- Probenahmen, Datenerfassung
- Probenhandling
- Sicherheit
- ...

Technische Anforderungen am Firmensitz

- Messgeräten: Beschaffung, Service, Logbücher
- Arbeitsanweisungen
- Auswertung und Berechnung
- Ringversuche
- Aus- und Weiterbildung
- ...

Technische Anforderungen an Messberichte

- Grundsätzliches: Lesbarkeit, Vollständigkeit
- Erforderliche Angaben
- Technischer Inhalt
- Resultate

Administrative Anforderungen

- Rechtliche Aspekte
- Verantwortlichkeiten
- Unabhängigkeit
- QS-System (Handbuch, Dokumentation)
- Ablagesystem
- Datenschutz

Anforderung für die Zulassung

Im Auftrag der Konferenz der Vorsteher der Umweltschutzämter der Schweiz (KVU) und des Bundesamts für Umwelt (BAFU)

Anforderungen für die Zulassung von Emissionsmessstellen unter Art. 13a LRV zum Nachweis anerkannter Regeln der Messtechnik

Schlussversion, 2. Auflage Zürich, 11. Dezember 2019

- J. Heldstab, B. Schäppi, INFRAS
- J. Beckbissinger, Luftunion

Erhältlich unter: www.qsem.ch/dokumente

QS Handbuch einer behördlichen Messstelle

Christoph Baltzer

Wirtschafts-, Energie- und Umweltdirektion des Kantons Bern

Amt für Energie und Umwelt | Abteilung Immissionsschutz

Inhalt

- Inhaltsverzeichnis QSHB Kt. BE
- Einleitung und Hintergrund
- Charakterisierung der Messstelle
- Qualitätspolitik
- Personal
- Messmethoden und Prüfverfahren
- Messausrüstung
- Auftragsabwicklung
- Umgang mit Daten /Informatik
- Kontakt

Inhaltsverzeichnis

Finlaitu	ng-und-Hintergrund3	4.	-	Messmethoden-und-Prüfverfahren	9
Limento	ng unu mintergrunu	4.1	-	Messmethoden, Validierung der Methoden	9
8) (d	900 AC 900 HT 82 900 - 000	4.2	-	Arbeitsanweisungen	
1. →	Charakterisierung-der-Messstelle3	4.3	-	Verwendete Normen	10
1.1 →	Name und Adresse der Messstelle	4.4	\rightarrow	Ringversuche	10
1.2 →	Organisation				
1.3 →	Dienstleistungen der Messstellen	5.	•	Messausrüstung	11
		5.1	•	Beschaffung, Einsatz, Unterhalt-und Service/Reparatur-von Prüfund	
1.3.1 →	Emissionsmessungen4			Messmitteln	
1.3.2 →	Weitere Dienstleistungen für Emissionsmessungen5	5.2	•	Geräteanweisungen, weitere Bedienungsanleitungen, Geräte-Logbuch	*11
1.4 →	Subunternehmer				
		6.	•	Auftragsabwicklung	12
8 999	A 1977 1979	6.1	•	Messauftrag,-Messplanung,-Messtechnik,-Vorbereitung	
7 -	Qualitätspolitik6			Ausführung·und-Dokumentation-der·Messungen·vor·Ort	
21 →	Grundsätze und Unabhängigkeit	6.3	•	Auswertung-und-Messberichte, Rückverfolgbarkeit	13
22 →	Zertifikat → 6	6.4	•	Ablagesystem-/-Lenkung-der-Dokumente	14
3376		6.5	•	Datenschutz	
	• · · · · · · · · · · · · · · · · · · ·	6.6	-	Umgang-mit-Reklamationen	14
3. →	Personal				
3.1 →	Einführung-neuer-Mitarbeiter, Personalaustritt	7.	•	Umgang-mit-Daten-/-Informatik 	
3.2 →	Kompetenzen, Ausund Weiterbildung	7.1	•	Datenerfassung, Datensicherung	
2000	Arbeitssicherheit - 8	7.2	•	Archivierung	15
3.3 →	Albeitssicheneit				
		8.	•	Dokument-Protokoll	16

Einleitung und Hintergrund

- Eckdaten zur Charakterisierung der Messstelle
- Grundsätze der Qualitätssicherung
- Definiert Aktivitäten rund um QS
- Vorgaben für QS bei Zusammenarbeit mit Subunternehmen
- Interne Prozesse im Zusammenhang mit der Messtätigkeit

1.1 → Name·und·Adresse·der·Messstelle

Tabelle-1:-Name,-Adresse-und-Kontaktangaben¶

Nameo	Behördliche·Messstelle·Kanton·Bern¤
Adresse¤	Amt-für-Umwelt-und-Energie¶ Immissionsschutz¶ Laupenstrasse-22¶ 3008-Bern¤
Email¤	info.luft@vol.be.ch¤
Telefon·und·Fax¤	Tel.++41·31·633·57·80¶ Fax·031·633·57·98¤

Charakterisierung der Messstelle

1.1 → Name·und·Adresse·der·Messstelle

Tabelle-1:-Name,-Adresse-und-Kontaktangaben¶

Nameo	Behördliche·Messstelle·Kanton·Bern¤		
Adresse¤	Amt·für·Umwelt·und·Energie¶		
	Immissionsschutz¶		
	Laupenstrasse-22¶		
	3008·Bern¤		
Email¤	info.luft@vol.be.ch¤		
Telefon·und·Fax¤	Tel.·+41·31·633·57·80¶		
	Fax-031-633-57-98¤		

. Tabelle-8:-Messkategorien-und-relevante-Arbeitsanweisungen¶

relevante·Arbeitsanweisungen-gemäss·Kap.·4.20 ¤	
и	
A1,·A4¤	
д	
A3¤	
A2¤	
н	

1.3.2 → Weitere · Dienstleistungen · für · Emissionsmessungen ¶

- Die Abt. Immissionsschutz-erteilt Messaufforderungen an Betreiber von Anlagen, die unter Abschnitt-Anhang 1-bis 3-der LRV-«Kontrolle von stationären Anlagen» fallen ¶
- - Sie prüft-Messberichte, die durch externe Messbüros durchgeführt wurden.

Tabelle·2:·Aktuelle·Zuständigkeiten·und·Stellvertretung¶

Zuständigkeiteno
Messverantwortung·(Messkategorien·1-5·und·7),·Beschaffung·von·Messgeräten,·Bb-urteilung·externer·Messberichte·(ins.·I&G)·¤
¤Messassistenz,·Beurteilung·externer·Messberichte,·Messaufträge,·Qualitätssicherung. Administration,·Stellvertretung□

Christoph Baltzer Personelle und fachliche Führung der Messstelle, Qualitätssicherung, Stellvertretung

Qualitätspolitik

- Enthält die Grundsätze zur Unabhängigkeit
- Alle Prozessschritte vom Messauftrag bis zur Abgabe des Messberichts sind rückverfolgbar
- Arbeits- und Handlungsweisen sind definiert
- Messbefähigung des Personals und der Messgeräte sind sichergestellt
- Freiwillige Unterziehung der periodischen Prüfung durch die QSEM
- Unabhängigkeit
- Haftpflichtversicherung
- Zertifikat (QSEM)

Personal

- Checkliste Einführung neuer Mitarbeiter
- Grundlagen
- Messpraxis
- Personalaustritt
- Kompetenzen
- Aus- und Weiterbildung
- Arbeitssicherheit (inkl. Checkliste)

Messmethoden und Prüfverfahren

- Grösstes Kapitel
- Nach Messkategorien aufgelistet
- Verwendete Normen
- Ringversuche
- Arbeitsanweisungen

Bisher:

- a. Messung der Feststoffkonzentration
- b. Messung von Metallen, Halbmetallen und ihre Verbindungen
- c. Messung von organischem Gesamt-C mittels FID
- d. Vorbereiten und Auswerten der Filterhülsen für Feststoffmessung

Messausrüstung

- Beschaffung
- Einsatz
- Service, Unterhalt und Wartung
- Geräteliste
- Serviceprotokolle
- Geräteanweisungen

Auftragsabwicklung

- Messauftrag
- Messplanung und Vorbereitung
- Interne Checkliste
- Ausführung und Dokumentation der Messung vor Ort
- Muster-Messprotokoll
- Datenerfassung
- Auswertung und Rückverfolgbarkeit
- Vorlage Messbericht

Umgang mit Daten / Informatik

- Ablagesystem und Lenkung der Dokumente
- Datenschutz
- Umgang mit Reklamationen
- Archivierung der Daten

Kontakt

Christoph Baltzer

Leiter Fachbereich Messungen, Kontrollen und Sanierungen <a href. werden und Sanierungen <a href. ter in der in de

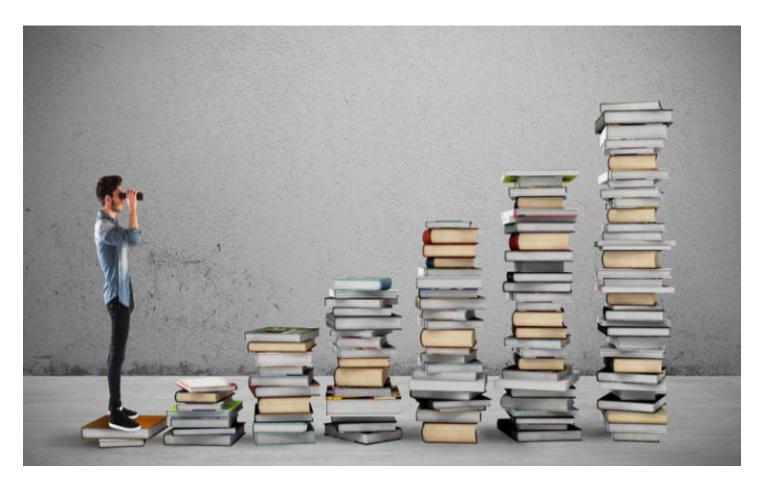
Tel. 031 633 57 99

&

Franz Oppliger

Messverantwortlicher Emissionsmessungen

franz.oppliger@be.ch


Tel. 031 633 57 87

QS-Handbuch einer privaten Messstelle

Jürgen Beckbissinger, Acontec AG

QS-Handbuch !!!!!

Was kommt da auf uns zu?

Handbuch

Wikipedia:

Aus dem griechischen *encheiridion* → etwas das man in der Hand hält «Exemplare geringeren Umfangs bezeichnet man als Handbüchlein.»

Duden:

Buch in handlichem Format, das den Stoff eines bestimmten Wissensgebietes oder dergleichen in systematischer, lexikalischer Form behandelt

Quelle: Wikipedia (2020). In Wikipedia, die freie Enzyklopädie. Abgerufen von https://de.wikipedia.org/wiki/Handbuch

Duden (2020). Abgerufen von https://www.duden.de/rechtschreibung/Handbuch

QS Handbuch

Das «QS-Handbuch» ist ursprünglich eine Forderung aus der EN ISO 9001

Das Vorhandensein eines Dokument zum eigenen QS-System ist eine zwingende Anforderung gemäss den aktuellen «Anforderungen für die Zulassung von Emissionsmessstellen unter Art. 13 a LRV zum Nachweis anerkannter Regeln der Messtechnik».

Ein QS-Handbuch erleichtert zudem, die unter Kapitel 3.2 «Administrative Anforderungen» gestellten Anforderungen systematisch darzustellen.

Motivation zur Erstellung eines QS-Handbuches

«Anforderungen für die Zulassung von Emissionsmessstellen unter Art. 13 a LRV zum Nachweis anerkannter Regeln der Messtechnik»

Umsetzung der administrativen Anforderungen gemäss Kapitel 3.2

Systematische Zusammenstellung der bereits vor dem Audit vorhandenen und im Zuge des neu Audits neu erstellten Informationen über das interne QS-System

QS-Handbuch der Acontec AG

Vorlage Homepage QSEM: https://www.kvu.ch/de/qs-emissionsmessungen/dokumente

Aufbau: nach Vorlage QSEM

Umfang: 17 Seiten

Anhang: Anhänge 1 bis 3: (ca. 20 Seiten)

Grundsatz: Das vorliegende QS-Handbuch und die allgemeinen Bedingungen für die Durchführung von amtlichen Emissionsmessungen der Acontec AG (siehe Anhang 1) beschreiben die Grundsätze der Qualitätssicherung und Unabhängigkeit der Messfirma.

Unabhängigkeit: Die Messfirma führt die Messung in völliger Unabhängigkeit von Kunden oder Dritten aus. Dies bedeutet, dass die Messfirma von keiner Stelle Anweisungen anfordert oder entgegennimmt, die das technische Urteil beeinträchtigen könnten. Die Messfirma ist nicht in Entwicklung, Herstellung, Vertrieb, Montage, Beschaffung, Nutzung oder Instandhaltung der zu messenden Anlagen oder Systeme involviert.

Zusätze

Datenbank / Verwaltung Geräte

Datenbank / Verwaltung Gase

Verwaltung Gase

Acontec_ID	661
Nummer	222864
BID	BID 7563110011770 1
Lieferant	Pangas
Art	Gasgemisch
Тур	Spezialgas
	NO
Inhalt _A	200.1
	ppm
	CO
Inhalt _B	400.1
	ppm
Inhalt _B	
Matrix	N2
Abfülldatum	30.07.2019
Lieferdatum	11.08.2019
Ablaufdatum	30.07.2021

Rückgabe	Nein
Aktiv	Ja
Druck [bar]	150
Flaschengrösse [I]	10
Bemerkung	Feuerungen
Miete	Jahres
Vertrag für	
Anschluss	W21.8*1/14 I
Abo	Ja
Preis (ohne MwSt)	CHF 458
Qualität	± 2%
Vergleich mit Flasche-	
Nummer	D944303
verglichen am	12.09.2019
Abweichung <5%	Ja
Zertifikat	

Verwaltung Geräte

Geräte_Nr	318	234
SN	H20020092	001375
Gerät	Universalmess gerät	NO- Messgerät
Gerätetyp	ALMENO 2490- 1R02U	Xenrtra 4000 Modell 4000C1
Hersteller	Ahlborn	Servomex
G_Vers	nein	ja
Gerät_Art_ No	5	0
Service	Interstar 041741 84 42	Dr. Marino Müller
Standort	LS	LS
Prüfintervall	Jahr	Kont.
Prüfort	Labor	Labor
Verantw	Bb	Bb
Messmittel	ja	ja
Prüfmittel	nein	nein
Preis	xxx	XXX

Neuwert	XXX	XXX
Aktiv	ja	ja
Status	grün	grün
Bereich	0 bis 600 °C	0 bis 500 ppm
Kaufdatum	03-Mär-20	2014
Jahrgang	2020	2014
Einsatz	Emission	Emission
Analogausgang	ja	ja
	Messbereich je	
	nach Einstellung	
Bemerkung	und Sensor	
Dossier	ja	ja
Entsorgt	nein	nein
Manual	<u>ja</u>	<u>ja</u>
		März 2020
Memo	_	Spiegel ersetzt
Datum QS	03-Mär-20	21-Apr-20
QS_ID	12512	19824
Bild	XX	XX

Anforderungen an Messgeräte, Kalibration und Prüfgase

Kurt Wälti UCW Umwelt Controlling + Consulting

Basis für die Durchführung von Emissionsmessungen

> Emissionsmessung bei stationären Anlagen

Emissions-Messempfehlungen

(BAFU 2013/aktualisiert 2018)

Anhand der Emissions-Messempfehlungen (ME) wurden die Anforderungen für die Audits definiert.

Thema sind kontinuierliche Messungen der gasförmigen Standardparameter in Abgas/Abluft:

- Sauerstoff O₂
- Kohlenmonoxid CO
- Kohlendioxid CO₂
- Stickoxide NO und NO₂
- Gasförmige organische Stoffe als Gesamtkohlenstoff

Ebenfalls kontinuierlich gemessen werden:

- Temperatur T
- Geschwindigkeit v

Kein kontinuierlich gemessener Standardparameter ist:

Feuchtigkeit/Wasser H₂O

Checklisten Anforderungen Audits "vor Ort"

Kontrollpunkt A4.1) Messausrüstung

Ist die Ausrüstung für die Messaufgabe geeignet und vollständig? a Gerätepark und Material für Messaufgabe vollständig? b Welche Messbereiche wurden warum gewählt?

→ Die Ausrüstung muss für die Messaufgabe geeignet und vollständig sein.

Checklisten Anforderungen Audits "vor Ort"

Kontrollpunkt A4.2) Prüfgase

Sind geeignete Prüfgase auf der Messstelle vorhanden? a) Welche Prüfgase werden eingesetzt (PG beim Grenzwert oder PG > 80 % Messbereich).

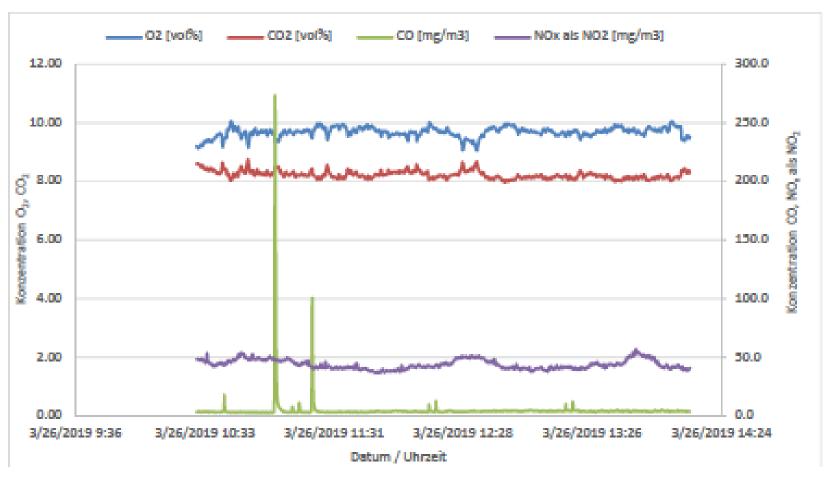
b) Wird bei der Wahl des Messbereichs und des Prüfgases berücksichtigt, dass die Emissionen der betreffenden Anlage eventuell stark schwanken können und der Messwert somit zeitweise weit vom Grenzwert entfernt liegen kann?

→ Es müssen geeignete Prüfgase auf der Messstelle vorhanden sein. Prüfgaskonzentration im Bereich des Grenzwertes oder bei ca. 80 % des Messbereiches

Angaben aus den ME

Definition Kalibrierung:

Kalibrieren im Bereich der Messtechnik heisst, die Messabweichung eines Messgerätes gegenüber einem Referenzwert festzustellen.


6.3.2 Kalibrierung auf der Messstelle

Mindestens vor Beginn und nach Beendigung der Messungen werden die Messgeräte mit entsprechenden Prüfgasen kalibriert. Die Kalibrierung soll der Messaufgabe insbesondere der relevanten Beurteilungsgrösse (Grenzwert) angepasst werden. Vor der ersten Kalibrierung ist der Gasweg auf Dichtigkeit zu prüfen. Die Aufgabe des Kalibriergases soll drucklos erfolgen und es muss der ganze Probegasweg einbezogen werden (Filter, Leitung, Messgasaufbereitung).

Im Allgemeinen wird zuerst der Gerätenullpunkt mit Nullgas (z.B. Stick-stoff) justiert, resp. für die nachfolgende rechnerische Korrektur registriert. Danach wird das Prüfgas aufgegeben und die Steigung der Kalibrierfunktion eingestellt, resp. für die nachfolgende rechnerische Korrektur registriert.

Handelt es sich um eine Kalibrierung nach einer Messung, wird das Gerät bei der Kalibrierung nicht verstellt, sondern es werden die angezeigten Werte registriert. So können auftretende Drifts festgehalten werden. Besondere Vorsicht ist bei der Nullpunktdrift angezeigt, denn nicht bei allen Geräten werden negative Ausgangssignale registriert. Die Kalibrierung erfolgt der Messaufgabe entsprechend im gleichen Messbereich, wie bei der Messung. Die Aufzeichnungen der Kalibrierungen gehören zu den Messdaten und sind wie diese zu archivieren.

Welche Messbereiche und Prüfgase sind im Beispiel richtig?

Aarau, 3. September 2020 | Geschäftsstelle QSEM | Weiterbildung: Einführung QS-System

O₂ ± konstant zwischen 9 und 10 %

Ideal wäre MB 5 – 15 %, gibt es aber kaum bei einem Gerät Gerät häufig MB 0 – 20 oder 25 % / 0 – 10 % \rightarrow 0 – 25 % PG Null = N_2 und ca. 10 – 12 %

CO₂ ± konstant zwischen 8 und 9 %

Ideal wäre MB 5 – 15 %, gibt es aber kaum Gerät häufig MB 0 – 20 oder 25 % / 0 – 10 % \rightarrow 0 – 25 % PG Null = N_2 und ca. 10 – 12 %

CO schwankt zwischen < 10 und > 250 mg/m³ (< 8 und > 200 ppm)

Grenzwert ist 50 mg/m 3 bezogen auf 11 % O_2 Ideal MB 0 – 250 ppm PG Null = N_2 und ca. 50 ppm + ca. 200 ppm

NOx schwankt zwischen 40 und 55 mg/m³ NO₂

(ca. 20 und 27 ppm NO nach Konverter) Grenzwert ist 80 mg/m³ bezogen auf 11 % O_2 Ideal MB 0 – 50 ppm NO PG Null = N_2 und < 50 ppm

Hinweise zur Wahl von Messgeräten

 Für anspruchsvolle Messungen sollten keine Messgeräte gekauft bzw. eingesetzt werden, die gemäss Verkäufer "alle Berechnungen automa-tisch erledigen". Besonders kritisch ist das automatische Umstellen von Messbereichen während der Messdauer.

Begründung: Das Messteam muss die Resultate nachvollziehen und insbesondere die Drifts erkennen bzw. korrigieren können. Alle Daten müssen daher entweder auf eine externe Datenerfassung geladen oder aus dem internen Speicher ausgelesen werden können.

Messbereiche:

$$O_2 \rightarrow 0 - 5 \% / 0 - 10 \% / 0 - 20/25 \%$$
 $CO_2 \rightarrow 0 - 10 \% / 0 - 20 \%$
 $CO \rightarrow 0 - 50 \text{ ppm} / 0 - 100 \text{ ppm} / 0 - 500 \text{ ppm} \text{ (Holzfeuerungen)}$
 $NO \rightarrow 0 - 50 \text{ ppm} / 0 - 100 \text{ ppm} / 0 - 200 \text{ ppm}$

Hinweise zur Wahl von Prüfgasen

Das Beispiel zeigt, wie schwierig die korrekte Wahl von Prüfgasen sein kann. Dies gilt insbesondere dann, wenn am Schluss die Resultate nahe oder im Bereich des Grenzwertes liegen und damit die Messwerte allenfalls auch über eine Anlagensanierung entscheiden.

Dies bedeutet, dass man sicher sein muss, dass der Messwert im Bereich des Grenzwertes so gut wie möglich stimmt. Im Beispiel ist dies für CO sehr schwierig, weil der Wert plötzlich sehr stark ausschlägt und man dann wegen des Einflusses des Peaks auf den Mittelwert auch weit oberhalb des Grenzwertes möglichst genau messen sollte. Wenn man eine Anlage kennt und weiss, dass die Emissionen stark schwan-ken können, empfiehlt sich eine Kalibration mit 2 Prüfgasen (hier 50 ppm und 200 ppm).

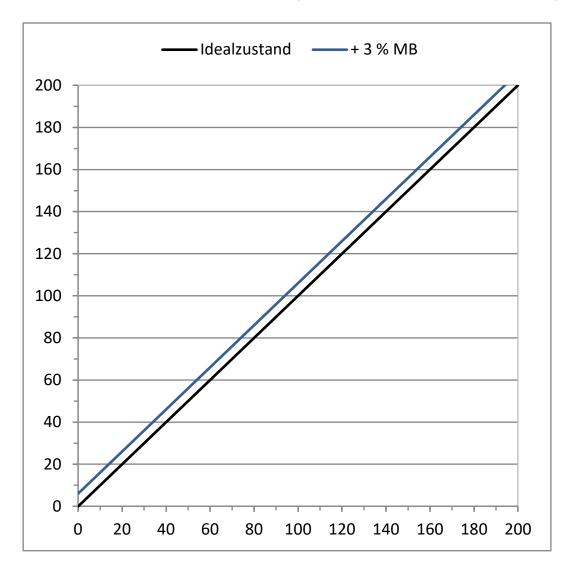
Anforderungen an Auswertungen und Berechnungen

Michael Andrée, Airmes AG

Checkliste Audit QSEM Punkt B 7.1

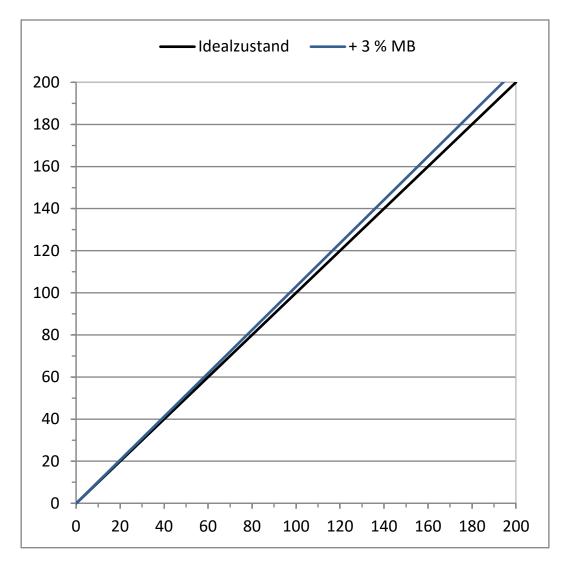
Wird eine Driftbereinigung vorgenommen?

Vorgabe: Die Driftbereinigung muss gemäss den geltenden Richtlinien durchgeführt werden.

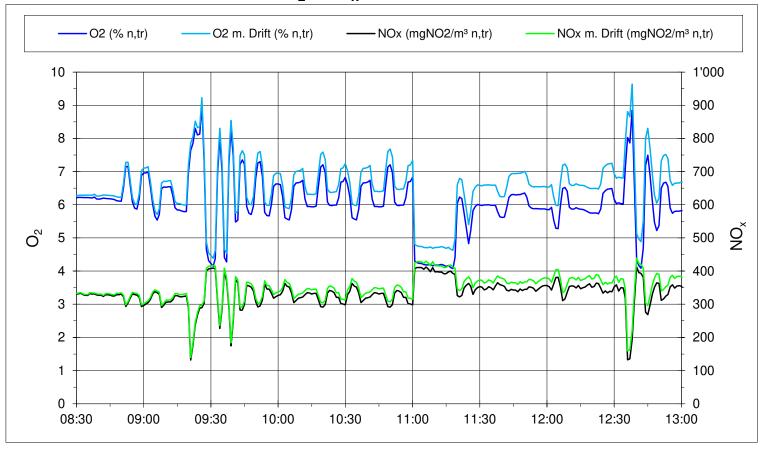

Es ist eine Korrektur von Nullpunkt und Prüfgasdrift vorzunehmen, wenn die Abweichung zwischen 2 % und 5 % des Messbereichs liegt.

Korrektur von Nullpunkt- und Prüfgasdrifts

• Eine Drift des Nullpunktes verändert den Messwert mit der Messdauer absolut (systematisch).


Nullpunktdrift: Anfang zu Ende Messung

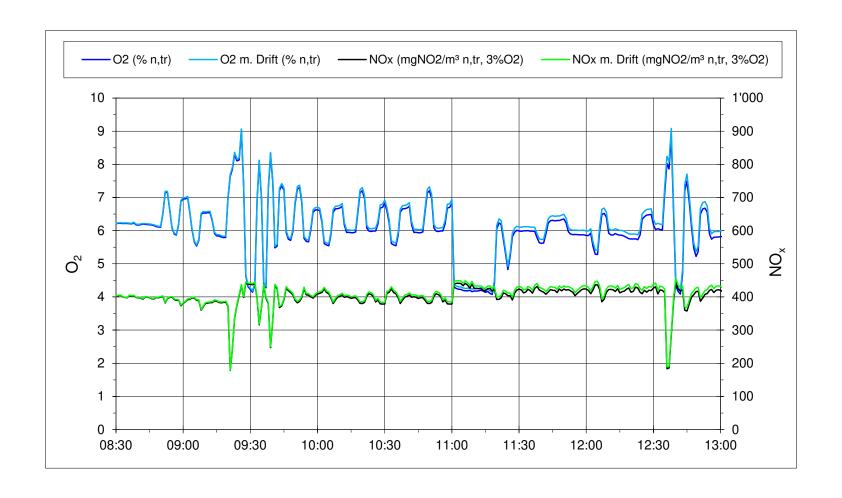
• Eine Drift des Prüfgaswertes verändert die Steigung der Analysefunktion, d.h. der Messwert ändert mit der Messdauer proportional zum Messwert (relativ).



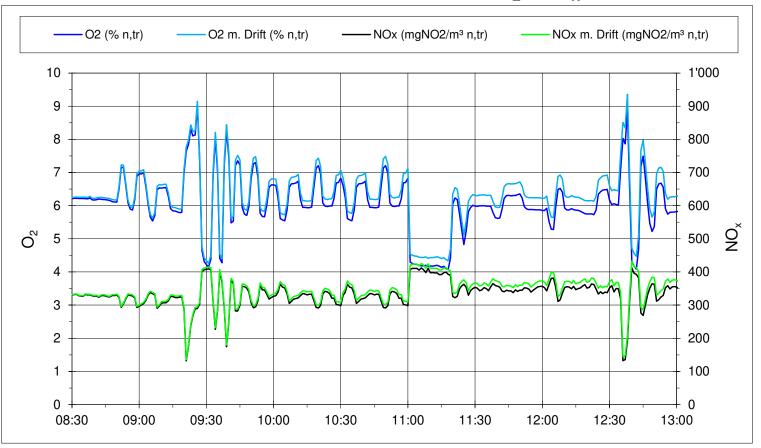
Prüfgasdrift: Anfang zu Ende der Messung

Einfluss einer reinen Nullpunktdrift

Nullpunktdrift O_2 , NO_x je + 3 % Messbereich



Messbereich O_2 : 0 – 30 %, Messbereich NO: 0 – 500 ppm


Einfluss einer reinen Prüfgasdrift

Einfluss der kombinierten Drift

Nullpunkt- und Prüfgasdrift O_2 , NO_x

Einfluss der Drifts auf O₂-Resultate

Nullpu	nktdrift	keine	+ 3 % MB	keine	+ 3 % MB	
Prüfgasdrift		keine	keine PG + 3 % MB		PG + 3 % MB	
Messzeit		O ₂	O2 O2		O ₂	
von	bis	% n,tr	% n,tr % n,tr		% n,tr	
08:30	09:00	6.3 ± 0.3	6.4 ± 0.3	6.3 ± 0.3	6.4 ± 0.3	
09:00	09:30	6.5 ± 0.3	6.7 ± 0.3	6.5 ± 0.3	6.7 ± 0.3	
09:30	10:00	6.3 ± 0.3	6.6 ± 0.3	6.4 ± 0.3	6.6 ± 0.3	
10:00	10:30	6.3 ± 0.3	6.7 ± 0.3	6.4 ± 0.3	6.7 ± 0.3	
10:30	11:00	6.3 ± 0.3	6.8 ± 0.3	6.4 ± 0.3	6.8 ± 0.3	
11:00	11:30	4.8 ± 0.2	5.3 ± 0.3	4.9 ± 0.2	5.3 ± 0.3	
11:30	12:00	6.0 ± 0.3	6.6 ± 0.3	6.2 ± 0.3	6.6 ± 0.3	
12:00	12:30	6.0 ± 0.3	6.7 ± 0.3	6.2 ± 0.3	6.7 ± 0.3	
12:30	13:00	6.2 ± 0.3	7.0 ± 0.3	6.4 ± 0.3	7.0 ± 0.3	
08:30	13:00	6.1 ± 0.3	6.5 ± 0.3	6.2 ± 0.3	6.5 ± 0.3	

Einfluss der Drifts auf NO_x-Resultate

Für Messungen ohne Sauerstoffbezug

Nullpunktdrift		keine	+ 3 % MB	keine	+ 3 % MB	
Prüfgasdrift		keine	keine PG + 3 % MB		PG + 3 % MB	
Messzeit		NOx	NOx	NOx	NOx	
von	bis	mgNO2/m³ n,tr	mgNO2/m³ n,tr	mgNO2/m³ n,tr	mgNO2/m³ n,tr	
08:30	09:00	324 ± 32	327 ± 33	325 ± 32	327 ± 33	
09:00	09:30	307 ± 31	314 ± 31	310 ± 31	314 ± 31	
09:30	10:00	323 ± 32	333 ± 33	326 ± 33	333 ± 33	
10:00	10:30	324 ± 32	337 ± 34	329 ± 33	337 ± 34	
10:30	11:00	324 ± 32	340 ± 34	330 ± 33	340 ± 34	
11:00	11:30	380 ± 38	399 ± 40	388 ± 39	399 ± 40	
11:30	12:00	349 ± 35	370 ± 37	357 ± 36	370 ± 37	
12:00	12:30	350 ± 35	374 ± 37	359 ± 36	374 ± 37	
12:30	13:00	324 ± 32	352 ± 35	334 ± 33	352 ± 35	
08:30	13:00	334 ± 33	350 ± 35	340 ± 34	350 ± 35	

Einfluss der Drifts auf NO_x-Resultate

Für Messungen mit Sauerstoffbezug $O_2 = 3 \%$

Nullpu	nktdrift	keine	+ 3 % MB	keine	+ 3 % MB	
Prüfga	asdrift	keine	keine PG + 3 % MB		PG + 3 % MB	
Messzeit		NOx*	NOx * NOx *		NOx*	
von	bis	mgNO ₂ /m³ _{n,tr}	mgNO ₂ /m ³ n,tr		mgNO2/m³ n,tr	
08:30	09:00	396 ± 41	401 ± 41	398 ± 41	401 ± 41	
09:00	09:30	381 ± 39	389 ± 40	383 ± 39	389 ± 40	
09:30	10:00	396 ± 40	408 ± 42	400 ± 41	408 ± 42	
10:00	10:30	397 ± 41	413 ± 42	403 ± 41	413 ± 42	
10:30	11:00	397 ± 41	416 ± 43	404 ± 41	416 ± 43	
11:00	11:30	421 ± 43	442 ± 45	430 ± 43	442 ± 45	
11:30	12:00	419 ± 43	445 ± 45	429 ± 44	445 ± 45	
12:00	12:30	419 ± 43	448 ± 46	430 ± 44	448 ± 46	
12:30	13:00	393 ± 40	427 ± 44	406 ± 41	427 ± 44	
08:30	13:00	402 ± 41	421 ± 43	409 ± 42	421 ± 43	

Checkliste Audit QSEM Punkt B 7.3

 Werden berechnete Grössen wie Volumenstrom, Feuerungswärmeleistung Gasfeuchte usw. korrekt berechnet?

Vorgabe: Berechnete Grössen müssen gemäss den geltenden Richtlinien durchgeführt werden.

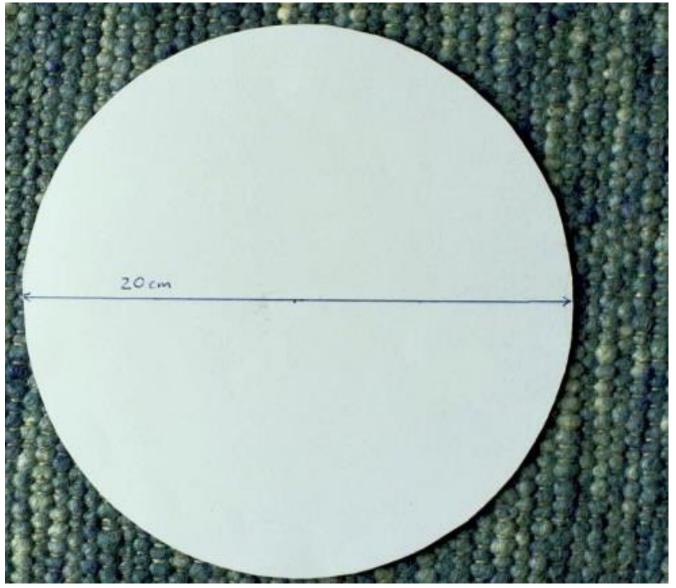
Beispiel: Volumenstrommessungen

Möglichkeiten der Volumenstrommessung

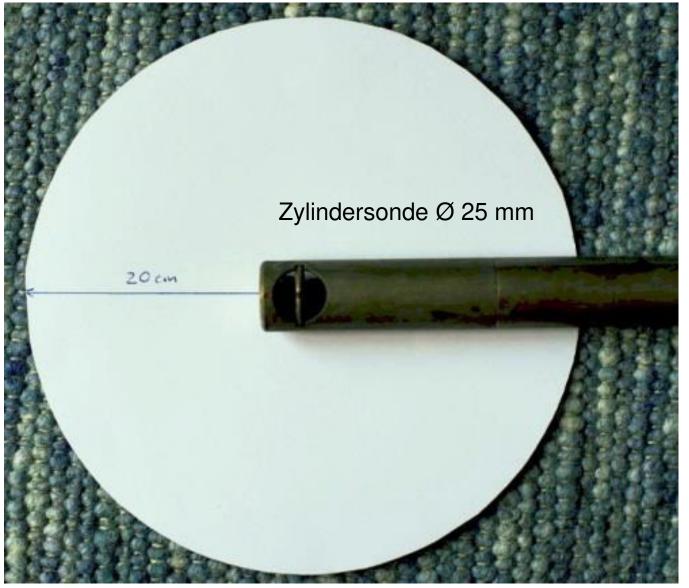
- Anemometer (Windrad)
- Prandtl- oder Pitot-Staurohr
- Vortex-Strömungsmessung (Wirbel)

Aarau, 3. September 2020 | Geschäftsstelle QSEM | Weiterbildung: Einführung QS-System

Vor- und Nachteile Anemometer


- Direkte Messung und Anzeige der Geschwindigkeit
- Einfache, kontinuierliche Messung von Geschwindigkeit und Temperatur gleichzeitig
- Sensoren standardmässig bis 250°C (Höntzsch), erhältlich bis 550°C, andere Produkte typisch bis 160°C

Nachteile


- Empfindlich auf Verschmutzung
- Empfindlich auf Ausrichtung zur Strömung
- Je nach Baugrösse des Anemometers und Rohrquerschnitt muss Profilfaktor berücksichtigt werden

Messquerschnitt 20 cm ohne Anemometer

Aarau, 3. September 2020 | Geschäftsstelle QSEM | Weiterbildung: Einführung QS-System

Messquerschnitt 20 cm mit Anemometer

Aarau, 3. September 2020 | Geschäftsstelle QSEM | Weiterbildung: Einführung QS-System

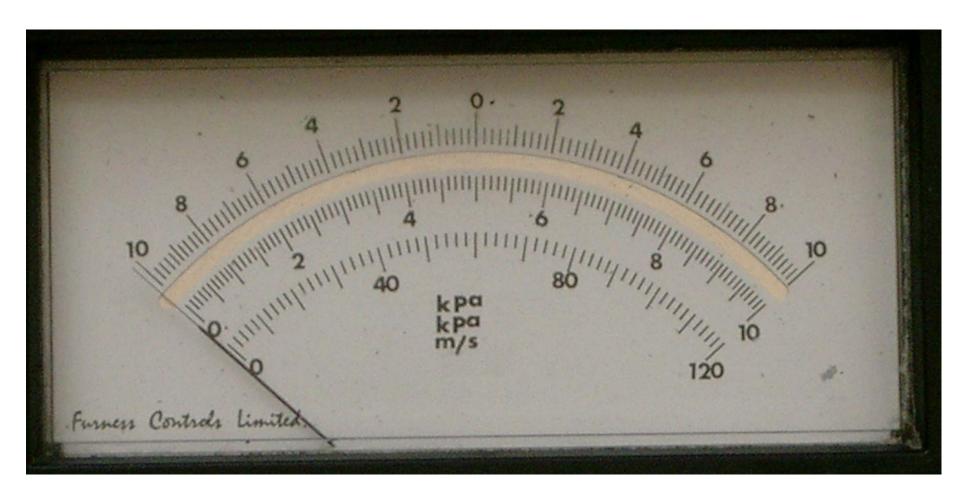
Profilfaktor

- Der Profilfaktor beschreibt das Verhältnis von mittlerer Strömungsgeschwindigkeit im Messquerschnitt und der vom Sensor gemessenen Strömungsgeschwindigkeit. Voraussetzung: Sensorpositionierung in Rohrmitte
- Das Anemometer verengt den Messquerschnitt
- Gemäss Venturi-Prinzip erhöht sich dadurch die Strömungsgeschwindigkeit
- Je kleiner der Messquerschnitt, desto grösser der Einfluss
- Korrektur möglich mit Profilfaktor

Einfluss des Querschnitts auf Geschwindigkeit

Für eine Zylindersonde ZS25 der Firma Höntzsch

	angezeigte		effektive
Rohrdurchmesser	Geschwindigkeit	Profilfaktor	Geschwindigkeit
[mm]	[m/s]		[m/s]
50	10	0.735	7.4
70	10	0.784	7.8
100	10	0.849	8.5
120	10	0.882	8.8
170	10	0.938	9.4
180	10	0.945	9.5
220	10	0.955	9.6


Vor- und Nachteile Prandtl-Staurohr

Vorteile:

- Keine bewegten Teile (hitzebeständig bis ca. 700°C)
- Weniger empfindlich gegen Schrägströmung
- Wenig empfindlich auf Staub

Nachteile:

- Geschwindigkeit i.A. nicht direkt angezeigt
- Empfindlich auf wasser-übersättigte Gase (Tropfen können Referenzöffnung schliessen)
- Abhängig von Gaszusammensetzung (Dichte)

Berechnung der Gasgeschwindigkeit

Die nachfolgende Berechnung ist nur bei Staudruckmessungen (mit Prandtl- oder Pitot-Rohr) nötig.

$$\begin{array}{ccc} - & \\ \mathcal{V} & = & \sqrt{\frac{2\overline{\Delta p}}{\rho_R}} \end{array}$$

u mittlere Abgasgeschwindigkeit im Kanal

 $\overline{\Delta p}$ gemittelte Staudruckmesswerte der Netzmessung mit Staurohr [Pa]

 ρ_R Gasdichte bei Kanalbedingungen feucht (= im Betriebszustand)

Hinweis: Berechnung des Mittelwertes der Differenzdruckmessungen:

$$\overline{\Delta p} = (\sqrt{\Delta p_1} + \sqrt{\Delta p_2} + \sqrt{\Delta p_3} + \sqrt{\Delta p_4})^2 \cdot (1/4)^2$$

Berechnung der Gasgeschwindigkeit

Die nachfolgende Berechnung ist nur bei Staudruckmessungen (mit Prandtl- oder Pitot-Rohr) nötig.

$$\begin{array}{ccc} - & \\ V & = & \sqrt{\frac{2\overline{\Delta p}}{\rho_R}} \end{array}$$

u mittlere Abgasgeschwindigkeit im Kanal

 $\overline{\Delta p}$ gemittelte Staudruckmesswerte der Netzmessung mit Staurohr [Pa]

 ρ_R Gasdichte bei Kanalbedingungen feucht (= im Betriebszustand)

Einfluss der Dichte auf Geschwindigkeit:

Anlage	Δp gemessen	Gaszusammensetzung			Dichte	Geschwindigkeit [m/s]	Abweichung	
	[Pa]	O2 [%]	CO2 [%]	N2 [%]	Feuchte [%]	[kg/m3 b]	berechnet	
Feuerung Waldholzschnitzel	19.5	12.4	8.2	79.4	12.4	0.82	6.9	-20%
Feuerung Pellets	2.6	12.7	8	79.3	7.7	0.88	2.4	-17%
Waldholz/Altholz	82	8.5	11.7	79.8	13.1	0.81	14.2	-21%
Schwerölfeuerung	46	5.0	12.3	82.7	8.2	0.56	12.8	-34%
							abgelesen	
Luft vs Waldholzschnitzel	19.5	21.0	0.0	79.0	1.2	1.29	5.5	
Luft vs Pellets	2.6	21.0	0.0	79.0	1.2	1.29	2.0	
Luft vs Waldholz/Altholz	82	21.0	0.0	79.0	1.2	1.29	11.3	
Luft vs Schwerölfeuerung	46	21.0	0.0	79.0	1.2	1.29	8.5	

Vor- und Nachteile Vortex-Messung

Vorteile:

- direkte Anzeige der Geschwindigkeit
- einfache, kontinuierliche Messung von Geschwindigkeit und Temperatur gleichzeitig
- Sensoren bis max. 240°C (Höntzsch)
- wenig empfindlich auf Staub

Video

Nachteile:

- Empfindlich auf Ausrichtung zur Strömung
- Je nach Baugrösse des Messkopfes und Rohrquerschnitt muss Profilfaktor berücksichtigt werden
- Empfindlich auf wasser-übersättigte Gase (Tropfen können Sensoren beeinflussen)
- Falls im Messkopf integriert: Temperaturmessung eher träge

Anforderungen an Messberichte

Kurt Wälti

UCW Umwelt Controlling + Consulting

Basis für die Berichterstattung von Emissionsmessungen

> Emissionsmessung bei stationären Anlagen

Emissions-Messempfehlungen

(BAFU 2013/aktualisiert 2018)

Anhand der Emissions-Messempfehlungen (ME) wurden die Anforderungen der Checklisten für die Audits definiert. In den ME ist die Struktur der Messberichte vorgegeben.

Kontrollpunkt C1.1) Lesbarkeit

- a) Klare Struktur
- b) Inhaltsverzeichnis (zwingend bei Berichten ab 5 Seiten)
- c) kein unnötiger Ballast (z.B. Zertifikate von Prüfgasen)
- d) wird die Fragestellung beantwortet
- -> Es muss ein Kompromiss zwischen vielen (eventuell "unnötigen") Angaben und genügend Informationsdichte gemacht werden.

Kontrollpunkt C1.2) Vollständigkeit

Alle Informationen so vorhanden, dass Nachvollzug der wesentlichen Vorgänge möglich ist. Es gilt in jedem Fall der Umfang gemäss den Messempfehlungen.

→ Die "wesentlichen Vorgänge" beziehen sich hier sowohl auf die gemessene Anlage, als auch auch die eigentliche Durchführung der Messungen (Messtechnik).

Kontrollpunkt C1.3) Beurteilung

Beurteilung der Resultate möglich a) entweder im Bericht durch Emissionsmessstelle selbst b) oder so viel Informationen, dass Behörde die Beurteilung/Bewertung einfach erledigen kann.

→ Ein vollständiger Bericht erlaubt auch eine korrekte Beurteilung. Das (private) Messteam kann eine Beurteilung der Resultate mit Vorbehalten machen, die definitive Beurteilung erfolgt im Normalfall durch die Behörde, welche die Messung verlangt hat.

Kontrollpunkt C1.4) Zielpublikum nicht vergessen

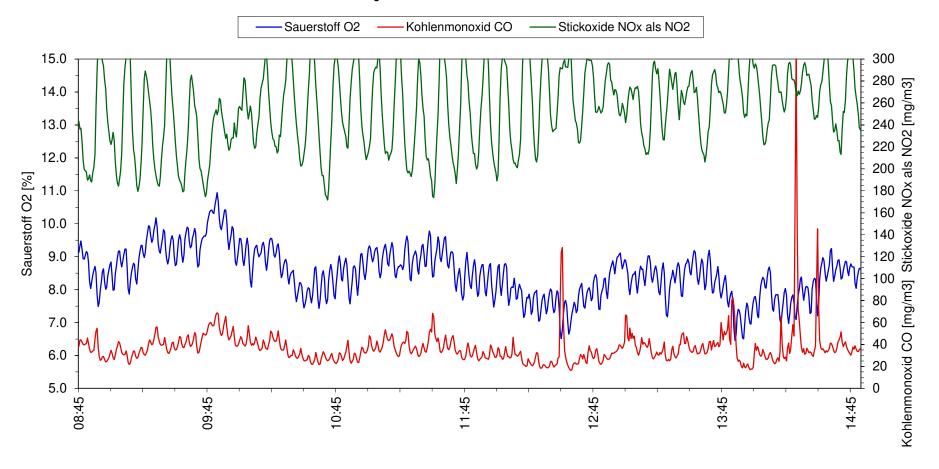
a) Anlagenbetreiber (oftmals keine Fachperson) \rightarrow einfache normale verständliche Sprache verwenden (z. B. in einer Zusammenfassung) b) Umweltfachperson/Behörde \rightarrow Detailangaben, welche für die Beurteilung relevant sind müssen, allenfalls in der Fachsprache, enthalten sein (vgl. C1.2).

→ Die Kontrollpunkte C1.1) und C1.2) sind entscheidend. Es lohnt sich, für den Anlagebetreiber am Anfang des Berichtes eine Zusammenfassung mit Resultattabellen und einer Diskussion oder Erklärungen zu schreiben. Die Detailangaben folgen dann und dienen den Fachpersonen als Grundlage für die Anlagen-Beurteilung.

Zwingend: Unterschrift des Messverantwortlichen

Hinweise

- Bei Messungen mit Mittelwerten über mehrere Stunden (Verbrennungsanlagen) sind für die Interpretation chronologische Stundenmittelwerte und der maximale 60-Minuten-Mittelwert als gleitender Mittelwert hilfreich.
- Grafiken/Diagramme müssen verständlich und korrekt beschriftet sein. Diagramme direkt aus dem Messgerät sind häufig wenig hilfreich und zeigen auch nicht die effektiven, driftbereinigten Resultate.


Beispiele

Resultatangabe und Diagramm für 6-h-Messung an Biomassekraftwerk.

Tabelle 1: Mittelwerte kontinuierliche Messungen

M Zeit		O ₂		CO		NO ₂	
_ W Zeit	Zeit	[%]	[mg/m ³]	(N) [mg/m ³]	[mg/m ³]	(N) [mg/m ³]	[mg/m³]
1)	08:50 – 9:50	9.1 ± 0.2	33 ± 5	28 ± 5	236 ± 24	199 ± 20	< 2
2)	09:50 – 10:50	8.7 ± 0.2	38 ± 5	31 ± 5	249 ± 25	204 ± 20	< 2
3)	10:50 – 11:50	8.8 ± 0.2	33 ± 5	27 ± 5	250 ± 25	205 ± 21	< 2
4)	11:50 – 12:50	7.8 ± 0.2	30 ± 5	23 ± 5	263 ± 26	200 ± 20	< 2
5)	12:50 – 13:50	8.4 ± 0.2	33 ± 5	26 ± 5	263 ± 26	209 ± 21	< 2
6)	13:50 – 14:50	7.9 ± 0.2	42 ± 5	33 ± 5	272 ± 27	208 ± 21	< 2
MW *	08:50 – 14:50	8.5 ± 0.2	33 ± 5	28 ± 5	256 ± 26	204 ± 20	< 2
60'- MW	13:41 – 14:41	8.0 ± 0.2	43 ± 5	33 ± 5	279 ± 28	215 ± 22	< 2
GW **				70		250	10

Abbildung 1: Konzentrationsverlauf

